Let a,b,∈R,b≠0. Define a function f(x)=⎧⎪
⎪⎨⎪
⎪⎩asinπ2(x−1),for x≤0tan2x−sin2xbx3,for x>0.
If f is continuous at x=0, then 10−ab is equal to
Open in App
Solution
LHL at x=0 for f(x) limx→0−asinπ2(x−1)=asin(−π2)=−a
RHL at x=0 for f(x) limx→0+tan2x−sin2xbx3=limx→0+tan2xx(1−cos2x)x2⋅1b =1blimx→0+tan2xx⋅1−cos2x4x2⋅4 =1b⋅2⋅12⋅4=4b
For continuity, −a=4b⇒ab=−4
So, 10−ab=14