We know that, if A is a square matrix of order n, then
|Adj A|=|A|n−1
Adj(Adj A)=|A|n−2A
|kA|=kn|A| where k is a scalar
Adj (kA)=kn−1Adj (A)
det(2 Adj(2 Adj(Adj(2A))))=241
⇒det(2 Adj(2 Adj(22Adj(A))))=241
⇒det(2Adj(2⋅24Adj(Adj(A))))=241
⇒det(2Adj(25|A|A))=241
⇒det(2(32 |A|)2(Adj(A))=241
⇒det(211|A|2(Adj(A))=241
⇒(211|A|2)3|AdjA|=241
⇒233|A|6 |A|2=241
⇒|A|8=28⇒|A|=±2
⇒|A|2=4