Let A be a matrix such that A⋅[1203] is a scalar matrix and |3A|=108. Then A2 equals :
Show that (ii)⎡⎢⎣123010110⎤⎥⎦⎡⎢⎣−1100−11234⎤⎥⎦≠⎡⎢⎣−1100−11234⎤⎥⎦⎡⎢⎣123010110⎤⎥⎦
Show that (i)[5−167][2134]≠[2134][5−167]
(ii)⎡⎢⎣123010110⎤⎥⎦⎡⎢⎣−1100−11234⎤⎥⎦≠⎡⎢⎣−1100−11234⎤⎥⎦⎡⎢⎣123010110⎤⎥⎦
If
[x 4−1]⎡⎢⎣210102024⎤⎥⎦⎡⎢⎣x4−1⎤⎥⎦=0,then x=
Wherever possible, write each of the following as a single matrix (i)[1234]+[−1−21−7] (ii)[234467]−[0236−10] (iii)[012467]+[3468]