The correct option is D 10+loge2
∫a0ex−[x]dx=10e−9
Here ex–[x]=e{x} is periodic function of period 1
∴∫[a]+{a}0e{x}dx=10e−9
⇒∫[a]0e{x}dx+∫{a}+[a][a]e{x}dx=10e−9
∵∫k+nTkf(x)dx=∫nT0f(x)dx=n∫T0f(x)dx, where T is the period of the f(x), n∈N,k∈R
⇒[a]∫10exdx+∫{a}0exdx=10e−9
⇒[a](e−1)+(e{a}−1)=10e−9
⇒[a]e+e{a}−[a]−1=10e−9
∴ Possible value of a=10+loge2