Let A be a square matrix of order 2 such that A+adjA=O. If det(A)=r and f(r)=det(A+det(A)⋅adjA) and local maximum value of f(r) is ab, where a,b∈N, then the value of 81(ab) is
Also, f(r)=det(A+det(A)⋅adjA) ⇒f(r)=det(A+r⋅adjA)
We have A+r⋅adjA=[abc−a]+r[−a−b−ca] ⇒A+r⋅adjA=[a(1−r)b(1−r)c(1−r)−a(1−r)]
Now, f(r)=det(A+r⋅adjA) ⇒f(r)=∣∣∣a(1−r)b(1−r)c(1−r)−a(1−r)∣∣∣ ⇒f(r)=(1−r)2(−a2−bc) ∴f(r)=r(1−r)2
Differentiation w.r.t. x, we get f′(r)=(1−r)2⋅1−r⋅2(1−r) ⇒f′(r)=(r−1)(3r−1)
Sign of f′(r): ∴r=13 is point of local maximum
and local maximum value of f(r) is 13×49=427=ab