adj (adj A)=|A|n−2A
So, adj (adj adj A)=|adj A|n−2adj A
=(|A|n−1)n−2 adj A
Putting n=3, we get
adj (adj adj A)=|A|2adj A=⎡⎢⎣160−3040034⎤⎥⎦ ⋯(1)
Taking determinant both sides
|adj (adj adj A)|=|A|6|adj A|=256
⇒|adj (adj adj A)|=|A|6|A|2=28
⇒|A|=±2
From (1),
adj A=14⎡⎢⎣160−3040034⎤⎥⎦=⎡⎢
⎢
⎢
⎢
⎢⎣40−340100341⎤⎥
⎥
⎥
⎥
⎥⎦
A−1=adj A|A|=±⎡⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣20−38012003812⎤⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦∴|trace(A−1)|=3