Let A be a square matrix such that A2=I, then at least one of I−A and I+A is
A
singular
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
symmetric
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
skew symmetric
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
none-singular
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is A singular Given, A2=I ⇒I−A2=(I−A)(I+A)=O ⇒|I−A||I+A|=0 ∴|I−A|=0 or |I+A|=0 i.e atleast one of (I−A) and (I+A) is singular. Hence, option A.