Let, f(x)=2x5+5x4+10x3+10x2+10x+10
⇒f′(x)=10(x4+2x3+3x2+2x+1)
=10x2(x2+1x2+2(x+1x)+3)
=10x2((x+1x)2+2(x+1x)+1)
=10x2((x+1x)+1)2>0;∀x∈R
∴f(x) is strictly increasing function. Since it is an odd degree polynominal it will have exactly one real root.
Now
f(−1)=3>0
and f(−2)=−64+80−80+40−20+10
=−34<0
⇒f(x) will have the root in the interval
(−2,−1)≡(a,a+1)
∴|a|=2