The given equation of circle is
x2+y2−2x−4y−20=0
Here, g=−1,f=2
Center is (1,2)
So, the coordinates of point A are (1,2).
Now, the tangent to the circle at B(1,7) is
x+7y−(x+1)−2(y+7)−20=0
⇒y=5
Tangent to circle at C(4,−2) is
4x−2y−(x+4)−2(y−2)−20=0
⇒3x−4y−20=0
These tangents intersect at D(16,7).
Area of the quadrilateral ABCD=2 Area of the triangle ABD
Area of quadrilateral =Δ=∣∣
∣∣1211711671∣∣
∣∣=75 sq.units
Hence, △15=5.