The correct option is B y=2x+2
5α2x3+10αx2+x+2y−4=0
The curve meets y−axis
⇒x=0
So, 0+0+0+2y−4=0
⇒y=2
∴A(0,2)
Now, 15α2x2+20αx+1+2dydx=0
⇒0+0+1+2dydx=0 (at point A)
⇒dydx=−12
∴ slope of normal at A=2
Let normal at A meet the curve again at point B(a,b)
⇒mAB=b−2a−0=2
⇒b=2a+2
⇒2b−4=4a
Also (a,b) lies on the curve
So, 5α2a3+10αa2+a+4a=0
(∵2b−4=4a)
⇒a(5α2a2+10αa+5)=0
⇒a(αa+1)25=0
⇒a=−1α
{a≠0∵For a=0,b=2 which denotes point A again}
∴ Coordinates of point B is (−1α,2−2α)
Now, 15α2x2+20αx+1+2dydx=0
⇒15−20+1+2dydx=0
⇒dydx=2(at B)
So, equation of tangent is
(y−2+2a)=2(x+1a)
⇒y=2x+2