wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Let A=[0tanαtanα0],
B(α)=[cosαsinαsinαcosα]

Open in App
Solution

A=[0tanαtanα0],B=[cosαsinαsinαcosα]
IA=[1001][0tanαtanα0]=[1tanαtanα1] ...(1)
(IA)1=cos2α[1tanαtanα1] ...(2)
I+A=[1001]+[0tanαtanα0]=[1tanαtanα1] ...(3)
(I+A)1=cos2α[1tanαtanα1] ...(4)
A) From (2) and (3)
(I+A)(IA)1=cos2α[1tanαtanα1][1tanαtanα1]=cos2α[1tan2α2tanα2tanα1tan2α]=[cos2αsin2αsin2αcos2α]=B(2α)
B) From (1) and (4)
(IA)(I+A)1=cos2α[1tanαtanα1][1tanαtanα1]=cos2α[1tan2α2tanα2tanα1tan2α]=[cos2αsin2αsin2αcos2α]=[cos(2α)sin(2α)sin(2α)cos(2α)]=B(2α)
C) B(α)2=[cosαsinαsinαcosα][cosαsinαsinαcosα]=[cos2αsin2αcosαsinαcosαsinαcosαsinα+cosαsinαcos2αsin2α]
=[cos2αsin2αsin2αcos2α]=B(2α)
D) B(α)1=1.[cosα+sinαsinαcosα]
B(α)2=[cosα+sinαsinαcosα][cosα+sinαsinαcosα]=[cos2αsin2αcosαsinα+cosαsinαcosαsinαcosαsinαcos2αsin2α]=[cos2αsin2αsin2αcos2α]=[cos(2α)sin(2α)sin(2α)cos(2α)]=B(2α)

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Introduction
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon