A=[0−tanαtanα0],B=[cosα−sinαsinαcosα]
I−A=[1001]−[0−tanαtanα0]=[1tanα−tanα1] ...(1)
(I−A)−1=cos2α[1−tanαtanα1] ...(2)
I+A=[1001]+[0−tanαtanα0]=[1−tanαtanα1] ...(3)
(I+A)−1=cos2α[1tanα−tanα1] ...(4)
A) From (2) and (3)
(I+A)(I−A)−1=cos2α[1−tanαtanα1][1−tanαtanα1]=cos2α[1−tan2α−2tanα2tanα1−tan2α]=[cos2α−sin2αsin2αcos2α]=B(2α)
B) From (1) and (4)
(I−A)(I+A)−1=cos2α[1tanα−tanα1][1tanα−tanα1]=cos2α[1−tan2α2tanα−2tanα1−tan2α]=[cos2αsin2α−sin2αcos2α]=[cos(−2α)sin(−2α)sin(−2α)cos(−2α)]=B(−2α)
C) B(α)2=[cosα−sinαsinαcosα][cosα−sinαsinαcosα]=[cos2α−sin2α−cosαsinα−cosαsinαcosαsinα+cosαsinαcos2α−sin2α]
=[cos2α−sin2αsin2αcos2α]=B(2α)
D) B(α)−1=1.[cosα+sinα−sinαcosα]
⇒B(α)−2=[cosα+sinα−sinαcosα][cosα+sinα−sinαcosα]=[cos2α−sin2αcosαsinα+cosαsinα−cosαsinα−cosαsinαcos2α−sin2α]=[cos2αsin2α−sin2αcos2α]=[cos(−2α)sin(−2α)sin(−2α)cos(−2α)]=B(−2α)