Let A=⎡⎢⎣1sinθ1−sinθ1sinθ−1−sinθ1⎤⎥⎦, where 0≤θ≤2π, then
a) det A=0
b) det Aϵ(2,∞)
c) det Aϵ(2,4)
d) det Aε[2,4]
Given A=⎡⎢⎣1sinθ1−sinθ1sinθ−1−sinθ1⎤⎥⎦
|A|=⎡⎢⎣1sinθ1−sinθ1sinθ−1−sinθ1⎤⎥⎦
=1(1+sin2θ)−sinθ(−sinθ+sinθ)+1(sin2θ+1)=2+2sin2θ
For 0≤θ≤2π,
−1≤sinθ≤1⇒0≤sin2θ≤1
⇒1≤1+sin2θ≤2⇒2≤2(1+sin2θ)≤4
∴det(A)ε[2,4]
Hence, the correct option is (d).