Given A=[2−134],B=[5274],C=[2538]
Since A,B,C are all square matrices of order 2, and CD–AB=O, D must be a square matrix of order 2.
Let D=[abcd]
Then CD−AB=0 gives
[2538][abcd]−[2−134][5274]=0
[2(a)+5(c)2(b)+5(d)3(a)+8(c)3(b)+8(d)]−[2(5)+(−1)72(2)+(−1)(4)3(5)+4(7)3(2)+4(4)]=0
⇒[2a+5c2b+5d3a+8c3b+8d]−[10−74−415+286+16]=0
⇒[2a+5c2b+5d3a+8c3b+8d]−[304322]=0
⇒[2a+5c−32b+5d−03a+8c−433b+8d−22]=[0000]
⇒[2a+5c−32b+5d3a+8c−433b+8d−22]=[0000]
Since matrices are equal,
Hence,
2a+5c−3=0 …(1)
3a+8c−43=0 …(2)
2b+5d=0 …(3)
3b+8d−22=0 …(4)
Solving equations
Solving equation (1)
2a+5c−3=0
⇒2a+5c=3
⇒2a=3−5c
⇒ a=(3−5c2)
Putting values of a in equation (2)
3a+8c−43=0
⇒3(3−5c2)+8c−43=0
⇒3(3−5c)+2(8c−43)2=0
⇒9−15c+16c−86=0
⇒−15c+16c−86+9=0
⇒c−77=0
⇒c=77
Putting value of c=77 in equation (1)
⇒2a+5×77−3=0
⇒2a+385−3=0
⇒2a=−382
⇒a=−3822
⇒a=−191
From equation (3)
2b+5d=0
⇒2b=−5d
⇒ b=(−52)d
Putting values of b in equation (4)
⇒ 3(−52)d+8d−22=0
⇒−15d2+8d−22=0
⇒−15d+16d−442=0
⇒ d−44=0
⇒ d=44
Putting value of d in equation (3)
⇒2b+5×44=0
⇒2b+220=0
⇒2b=−220
⇒ b=−2202
⇒ b=−110
Hence, a=−191,b=−110,c=77,d=44.
Therefore, Matrix D is [−191−1107744]