wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Let A=[3725] and B=[6879] verify that
(AB)1=B1A1

Open in App
Solution

Given, A=[3725]|A|=[3725]=1514=1
Cofactors of A are A11=5,A12=2,A21=7,A22=3adj (A)=[5273]T=[5723]
Now, A1=1|A|(adj(A))=11[5723]
Here, B=[6879] |B|=[6879]=5456=2

Cofactors of B are B11=9,B12=7,B21=8,B22=6
adj (A)=[9786]T=[9876] B11|B|(adj B)=12[9876]

Now, B1A1=12[9876][5723]=12[45+166324351249+18]=12[61874767]=612872472672 (i)
Now, AB=[3725][6879]=[18+4924+6312+3516+45]=[67874761]
|AB|=[67874761]=67×6147×87=40874089=2
Cofactors of AB are A11=61,A12=47,A21=87,A22=67
adj(AB)=[61478767]=[61874767]
(AB)1=1|AB|(adj AB)=12[67874767]=612872472672 (ii)
From Eqs. (i) and (ii), we get (AB)1=B1A1
Hence, the given result is proved.


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Types of Matrices
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon