The correct option is A S7=0 and S5=0
Given z12−z7−z5+1=0
⇒z7(z5−1)−1(z5−1)=0
⇒(z7−1)(z5−1)=0
⇒α7−1=0 or α5−1=0
(∵α is a root)
Case : 1 when α7−1=0
⇒(α−1)(α6+α5+α4+⋯+1)=0)
⇒1+α+α2+⋯+α6=0 (∵α≠1)
⇒S7=0 ⋯(1)
Case : 2 when α5−1=0
⇒(α−1)(α4+α3+α2+α+1)=0)
⇒1+α+α2+α3+α4=0 (∵α≠1)
⇒S5=0 ⋯(2)
As α≠1, so α7−1=0 and α5−1=0 cannot occur simultaneously because 7 and 5 are distinct primes.
∴ Either (1) is true or (2) is true but not both.
Since, α is nth root of unity, therefore |α|=1