Let A denote the number of integers satisfying the inequality 3√6+x−x2>4x−2.B denote the value of a for which the minimum value of the function P(x)=x2−4ax−a4 assume the greatest value.
Open in App
Solution
3√6+x−x2>4x−2
36+9x−9x2>16x2−16x+4
25x2−25x−32<0⟹x∈(−0.74,1.74)
A=2
P(x)=x2−4ax−a4
Minimum value of P(x) is −((4a)2−4(1)(−a4))4(1)=−a4−4a2