Given , x=a3y+a2z
y=a1z+a3x
z=a2x+a1y
Since, x,y,z are not all zero, therefore given system of equations has a non-trivial solution.
∴∣∣
∣∣1−a3−a2a3−1a1a2a1−1∣∣
∣∣=0
⇒a21+a22+a23+2a1a2a3=1 ⋯(1)
Since, a1=m−[m] and m is not an integer,
∴0<a1<1⇒0<1−a21<1
From Eq. (1),
1−a22−a23=a21+2a1a2a3
⇒1−a22−a23+a22a23=a21+2a1a2a3+a22a23
⇒(1−a22)(1−a23)=(a1+a2a3)2
Similarly, (1−a21)(1−a23)=(a2+a1a3)2 ⋯(2)
and (1−a21)(1−a22)=(a3+a1a2)2 ⋯(3
From Eq. (3),
1−a22=(a3+a1a2)21−a21>0
From Eq. (2), 1−a23>0
So, 1−a21+1−a22+1−a23>0
⇒a21+a22+a23<3
⇒1−2a1a2a3<3 [From Eq. (1)]
⇒a1a2a3>−1⇒|a1a2a3|>1
So the least integral value of |a1a2a3| is 2