f(x)=tr((A−1B)−1)=tr(B−1A)
Now, B−1=diag(x2,x,1)
A=diag(x2,6x,1)⇒B−1A=diag(x4,6x2,1)
∴f(x)=x4+6x2+1
Now, ∫f(x)x2+1dx
=∫x4+6x2+1x2+1dx=∫(x2+5)(x2+1)−4x2+1dx=∫(x2+5−4x2+1)dx=x33+5x−4tan−1x+C⇒g(x)=x33+5x−4tan−1x (∵g(0)=0)
Differentiating w.r.t. x, we get
g′(x)=x2+5−4x2+1
Assuming x2+1=t, then
g′(x)=t2+4t−4t=(t+2)2−8t
As x2≥0⇒t≥1
⇒(t+2)2≥9⇒(t+2)2−8≥1∴g′(x)>0
⇒g(x) is monotonically increasing function.
Hence, g(x)=0 has only one solution i.e., x=0