The correct option is D either f(x) has atleast one minima or one maxima.
Given : f:[a,b]→R and f′(x)≠0
⇒ at boundary points x=a,b, either f′(x)>0 or f′(x)<0
i.e.f(x) is either increasing or decreasing at x=a,b
At x=a:
⇒f(a)<f(a+) OR f(a)>f(a+)
∴ at x=a, either a minima or a maxima exists.
Similarly at x=b: f(x) is either increasing or decreasing
⇒f(b)<f(b−) OR f(b)>f(b−)
∴ at x=b, either a minima or a maxima exists.
So, possible combinations at points x=a,b are :
(minima,minima),(minima,maxima),(maxima,minima),(maxima,maxima)