The correct option is B [−1,0)
Case I: m=−k,where k>0
∴f(x)={−2k−x,x≤1−4kx+1,x>1
If−∞<x≤1⇒−1≤−x<∞⇒−2k−1≤−2k−x<∞⇒−2k−1≤f(x)<∞ ∀ x≤1
If 1<x<∞⇒−∞≤−x<−1⇒−∞<−4kx<−4k⇒−∞<−4kx+1<−4k+1⇒−∞<f(x)<−4k+1 ∀ x>1
Since, f(x) is an onto function.
−4k+1≥−2k−1⇒4m+1≥2m−1⇒2m≥−2⇒m≥−1∴−1≤m<0 [As m is negative]
Case II: m=k,where k>0
∴f(x)={2k−x,x≤14kx+1,x>1
If −∞<x≤1⇒−1≤−x<∞⇒2k−1≤2k−x<∞⇒2k−1≤f(x)<∞ ∀ x≤1 ...[1]
If 1<x<∞⇒4k<4kx<∞⇒4k+1<4kx+1<∞⇒4k+1<f(x)<∞ ∀ x>1 ...[2]
Since, f(x) is an onto function, the union of [1] and [2] should be R. This is not possible as k is positive.
Therefore, m cannot be positive. Case II is not possible.
Range of f is [−1,0)