The correct option is D global extrema does not exist.
Given : f(x)=cos2x+2sinx
⇒f′(x)=−2sin2x+2cosx⇒f′(x)=2cosx(1−2sinx)
for critical points : f′(x)=0
⇒2cosx(1−2sinx)=0⇒x=π6,π2,5π6 and end points are 0,π.
Now, value of function at these points :
f(0)=1,f(π6)=32,f(π2)=1,f(5π6)=32,f(π)=1
So, range of f(x)∈[1,32]
and global maxima exist at x=π6,5π6 and
global minima exist at x=0,π2,π