Let a→=i^+2j^-k,^b→=i^-j^ and c→=i^-j^-k^be three given vectors. If r→is a vector such that r→×a→=c→×a→and r→.b→=0then r→.a→is equal to _____
Determine the value of r→.a→
Step 1: Rearranging the equation r→×a→=c→×a→
⇒r→×a→-c→×a→=0⇒r→-c→×a→=0....(i)
If cross product of two vectors are zero, then these two vectors are parallel
So, r→-c→&a→are parallel vectors
∴r→-c→=λa→⇒r→=λa→+c→......(ii)⇒r→·b→=λa→·b→+c→·b→[takingdotproductwithb]→
Step 2: Finding value of λ ⇒λi^+2j^-k^i^-j^+i^-j^-k^i^-j^=0[∵a→=i^+2j^-k^,b→=i^-j^,c→=i^-j^-k^,r→.b→=0&r→.a→=0aregiven]⇒λi^.i^+2j^·i^-k^·i^+i^·j^+2j^·j^+k^·i^+i^.i^-i^.j^-j^.i^+j^.j^-k^.i^+k^.j^=0⇒λ1-2+2=0[∵i^,j^,k^areunitvectors,∴i^.i^=j^.j^=k^.k^=1andj^.k^=k^.j^=k^.i^=i^.k^=i^.j^=j^.i^=0]⇒λ=2
Putting value of λ into (ii)
⇒r→=2a→+c→⇒r→·a→=2a→·a→+c→·a→[takingdotprodutwitha→bothsides]⇒r→·a→=2a→2+c→·a→⇒r→·a→=2a→2+i^-j^-k^i^+2j^-k^⇒r→·a→=212+22+122+1-2+1∵a→=i^+2j^-k^,b→=i^-j^,&c→=i^-j^-k^⇒r→·a→=2×6+0⇒r→·a→=12
Hence r→·a→=12is the required answer.