wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Let a=i^+2j^-k,^b=i^-j^ and c=i^-j^-k^be three given vectors. If ris a vector such that r×a=c×aand r.b=0then r.ais equal to _____


Open in App
Solution

Determine the value of r.a

Step 1: Rearranging the equation r×a=c×a

r×a-c×a=0r-c×a=0....(i)

If cross product of two vectors are zero, then these two vectors are parallel

So, r-c&aare parallel vectors

r-c=λar=λa+c......(ii)r·b=λa·b+c·b[takingdotproductwithb]

Step 2: Finding value of λ λi^+2j^-k^i^-j^+i^-j^-k^i^-j^=0[a=i^+2j^-k^,b=i^-j^,c=i^-j^-k^,r.b=0&r.a=0aregiven]λi^.i^+2j^·i^-k^·i^+i^·j^+2j^·j^+k^·i^+i^.i^-i^.j^-j^.i^+j^.j^-k^.i^+k^.j^=0λ1-2+2=0[i^,j^,k^areunitvectors,i^.i^=j^.j^=k^.k^=1andj^.k^=k^.j^=k^.i^=i^.k^=i^.j^=j^.i^=0]λ=2

Putting value of λ into (ii)

r=2a+cr·a=2a·a+c·a[takingdotprodutwithabothsides]r·a=2a2+c·ar·a=2a2+i^-j^-k^i^+2j^-k^r·a=212+22+122+1-2+1a=i^+2j^-k^,b=i^-j^,&c=i^-j^-k^r·a=2×6+0r·a=12

Hence r·a=12is the required answer.


flag
Suggest Corrections
thumbs-up
9
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
The Work Done as a Dot-Product
PHYSICS
Watch in App
Join BYJU'S Learning Program
CrossIcon