The correct option is
A c=1√6(i+j+2k).d=1√3(i+j−k)
Let us understand the basic concept to solve this type of problem
Given vectors
→a=^i−^j
→b=^i+^k
Let any unit vector be c
→c=1√a2+b2+c2(a^i+b^k+c^k)
Given
→a⋅→c=0
(^i−^j)⋅(1√a2+b2+c2(a^i+b^k+c^k))=0
a√a2+b2+c2−b√a2+b2+c2=0
a=b
[→a→b→c]=0
1√a2+b2+c2∣∣
∣∣1−10101abc∣∣
∣∣=0$
1(b)−1(c−a)=0
a−c+a=0 here a=b
c=2a
putting b,c in →c
→c=1√a2+a2+4a2(a^i+a^j+2a^k)
→c=1√6a2(a^i+a^j+2a^k)
HERE option (A) is satisfying all condition of →c
→c=1√6(^i+^j+2^k)
now let
→d=1√x2+y2+z2(x^i+y^j+z^k)
→a⋅→d=0
(^i−^j)⋅(1√x2+y2+z2(x^i+y^j+z^k))=0
x√x2+y2+z2−y√x2+y2+z2=0
x=y
→c⋅→d=0
(1√6(^i+^j+2^k))⋅(1√x2+y2+z2(x^i+y^j+z^k))=0
x√6(x2+y2+z2)+y6(√x2+y2+z2)+z6(√x2+y2+z2)=0
since x=y
x√6(x2+x2+z2)+x6(√x2+x2+z2)+z6(√x2+x2+z2)=0
z=−x
putting y,z in →z
→d=1√x2+x2+(−x)2(x^i+x^j−x^k)
→d=1√3x2(x^i+x^j−x^k)
x=1
→d=1√3(^i+^j−^k)
So option d is wrong in option (A)