Let a =Im (1+z22iz), where z is any non-zero complex number. The set A={a:|z|=1,z≠±1} is equal to
A
(– 1, 1)
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
[–1, 1]
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
[0, 1)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
(–1, 0]
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is A (– 1, 1) Given |z|=1 and z≠±1 ∴z=cosθ+isinθ,θ≠0,π Now (1+z22iz)=1+(cosθ+isinθ)22i(cosθ+isinθ)=(1+cos2θ+isin2θ)(−sinθ−icosθ)2 ∴a=Im(1+z22iz)=−12[cosθ(1+cos2θ)+sin2θsinθ]=−12[cosθ+cos2θcosθ+sin2θsinθ]=−12[cosθ+cosθ]=−cosθ∴−1<−cosθ<1⇒a∈(−1,1)