The correct option is D satisfies BZ=O, O being the null matrix
A is orthogonal matrix.
⇒AAT=ATA=I
⇒XTX=YTY=ZTZ=1
and XTY=XTZ=YTZ=YTX=ZTX=ZTY=0
B=XXT+YYT
BT=(XXT+YYT)T=XXT+YYT
Hence, B is symmetric.
B2=(XXT+YYT)(XXT+YYT)
=XXT(XXT+YYT)+YYT(XXT+YYT)
=XXT+YYT=B
BZ=(XXT+YYT)Z
=XXTZ+YYTZ
=O
We know that for any n×n identity matrix I and a n×1 non-zero vector A, IA=A
But here, BZ=O
Hence, B can't be the 3×3 identity matrix.