Let A={x∈R:x−1x>1} and B={x∈R:ln(x2−4x+4)≥0}, then A∩B equals
Let A={xϵR:x≠0,−4≤x≤4} and f:A→R be defined f(x)=|x|x for xϵA. Then A is
If equation ax2+2cx+b=0 and ax2+2bx+c=0 have one root in common, then a + 4b + 4c equals