Let A={x:xis an odd prime number andx<15} and B={x:xis divisible by either 5 or 7, and3≤x≤15}. If P=A∪B,Q=A∩B and the number of relations from P to Q is 4k, then the value of k is
Open in App
Solution
A={x:xis an odd prime number andx<15} ⇒A={3,5,7,11,13} B={x:xis divisible by either 5 or 7, and3≤x≤15} ⇒B={5,7,10,14,15}
P=A∪B={3,5,7,10,11,13,14,15} Q=A∩B={5,7}
Number of relations from P to Q =2n(P)⋅n(Q) =28×2=216=48 Hence, k=8