Let a=min{x2+2x+3,xϵR}andb=limθ→01−cosθθ2. The value of Σnr=0ar.bn−r is
A
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is C a=min{x2+2x+3,xϵR}=min{(x+1)2+2,xϵR}=2andb=limθ→01−cosθθ2=limθ→0(1−cosθ)(1+cosθ)θ2(1+cosθ)=12∴Σnr=0ar.bn−r=bnΣnr=0(ab)r=(12)nΣnr=0(4)r=12n(1+4+42+……+4n)=12n.1.(4n+1−14−1)=4n+1−13.2n