wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Let An be the area bounded by the curve y=(tanx)n & the lines x=0,y=0& x=π/4. Prove that for n>2,An+An2=1/(n1) & deduce that 1/(2n+2)<An<1/(2n1).

Open in App
Solution

An=π40(tanx)2dx
An2=π40(tanx)n2dx
An+An2=π40(tanx)ndx+π40(tanx)n2dx
put t=tanx
dt=sec2xdx
dt(1+t2)=dx
A2+An2=10tn(1+t2)dt+10tn2(1+t2)dt
A2+An2=10[tn(1+t2)+tn(1+t2)t2]dt
A2+An2=10(t2+1)(1+t2)tnt2dt
=10tn2dt
A2+An2=[tn1(n1)]10=1(n1)
u=tanx 0<u<1
un2>un un>un+2
An2>An An>An2
Adding An on both sides Adding An on both sides
An+An+2>2An 2An>An+An+2
1(n1)>2An 2An>1n+1
An<12n+2 An>12n+2
12n+2<An<12n1

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Area under the Curve
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon