The correct option is A 0
an=∫π/201−cos2nx1−cos2xdx,
an+2=∫π/201−cos2(n+2)x1−cos2xdx
Also,an+1=∫π/201−cos2(n+1)x1−cos2xdx
an+an+2=∫π/202−[cos2nx+cos2(n+2)x]1−cos2xdx
=∫π/202−[2cos2(n+1)xcos2x]1−cos2xdx
Now, an+an+2−2an+1=∫π/20−2cos2(n+1)xcos2x+2cos2(n+1)x1−cos2xdx
=∫π/202cos2(n+1)x(1−cos2x)1−cos2xdx
=2∫π/20cos2(n+1)xdx
=[sin2(n+1)x2(n+1)]π/20
=0
Now, consider, ∣∣
∣
∣∣π2a2a3a4a5a6a7a8a9∣∣
∣
∣∣
C1→C1+C3−2C2
=∣∣
∣∣0a2a30a5a60a8a9∣∣
∣∣
=0