The correct option is A an−2+an−1+2n−2
a1=0 [no strings of length 1 contain two consecutive 1's]
a2=1[∴strings=11]
a3=3[∴ strings are : 011, 110,111]
a4=8[∴ strings are : 0011, 0110, 0111, 1011, 1100, 1101, 1110, 1111]
Option (a):
an=an−2+an−1+2n−2
⇒a4=a4−2+a4−1+24−2
=a2=a3+22
= 1+3+4 = 8 which is True.
Option (b):
an=an−2+2an−1+2n−2
⇒a4=a2+2a3+22
= 1+2x3+4=11 which is false.
Option (c) :
an=2an−2+an−1+2n−2
⇒a4=2a2+a3+22
= 2x1+3+4 = 9 which is false.
Option (d):
an=2an−2+2an−1+2n−2
⇒a4=2a2+2a3+22
= 2x1+2x3+4 = 12 which False.
∴Option(a):an=an−2+an−1+2n−2 is correct.