wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Let A = N × N and * be the binary operation on A defined by

(a, b) * (c, d) = (a + c, b + d)

Show that * is commutative and associative. Find the identity element for * on A, if any.

Open in App
Solution

A = N × N

* is a binary operation on A and is defined by:

(a, b) * (c, d) = (a + c, b + d)

Let (a, b), (c, d) ∈ A

Then, a, b, c, dN

We have:

(a, b) * (c, d) = (a + c, b + d)

(c, d) * (a, b) = (c + a, d + b) = (a + c, b + d)

[Addition is commutative in the set of natural numbers]

∴(a, b) * (c, d) = (c, d) * (a, b)

Therefore, the operation * is commutative.

Now, let (a, b), (c, d), (e, f) ∈A

Then, a, b, c, d, e, f N

We have:

Therefore, the operation * is associative.

An element will be an identity element for the operation * if

, i.e., which is not true for any element in A.

Therefore, the operation * does not have any identity element.


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Binary Operations
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon