Given binary operation is :
(a,b)∗(c,d)=(ac,b+ad) …(i)
(c,d)∗(a,b)=(ca,d+cb) …(ii)
Since (i)≠(ii)
Thus, ∗ is not commutative.
Now, (a,b)∗((c,d)∗(e,f))
=(a,b)∗(ce,d+cf)
=(ace,b+ad+acf) …(iii)
And, ((a,b)∗(c,d))∗(e,f)
=(ac,b+ad)∗(e,f)
=(ace,b+ad+acf) …(iv)
From (iii) and (iv), we have
(a,b)∗((c,d)∗(e,f))=((a,b)∗(c,d))∗(e,f).
Thus, ∗ is associative.
(i) Let (x,y) be the identity element in A.
Now, (a,b)∗(x,y)=(a,b)=(x,y)∗(a,b)∀(a,b)∈A
⇒(ax,b+ay)=(a,b)=(xa,y+bx)
Equating corresponding terms, we have
⇒ax=a, b+ay=b or a=xa, b=y+bx
⇒x=1 and y=0
Hence, (1,0) is the identity element in A.
(ii) Let (a,b) be an invertible element in A and let (c,d) be its inverse in A.
Now, (a,b)∗(c,d)=(1,0)=(c,d)∗(a,b)
⇒(ac, b+ad)=(1,0)=(ca, d+bc)
[by equating corresponding elemensts]
⇒ac=1, b+ad=0 or 1=ca, 0=d+bc
⇒c=1a and d=−ba, where, a≠0
Therefore, (a,b)∈A is an invertible element of A if a≠0, and inverse of (a,b) is(1a, −ba).