(i) For any (a, b), (c, d), (e, f)∈A, we have ′∗′
{(a,b)∗(c,d)}∗[e,d]
=(ac,b+ad)∗(e,f)
=(ace,b+ad+acf)
and
(a,b)∗{(c,d)∗(e,f)}
=(a,b)∗(ce,d+cf)
=(ace,b+ad+acf)
So, {(a,b)∗(c,d)}∗(e,f)=(a,b)∗{(c,d)∗(e,f)} for all a, b, c, d, ∈Q×Q=A
⇒′∗′ is associative on A
(ii) Let (x, y) e identify element of A
(a,b)∗(x,y)=(a,b)=(x,y)∗(a,b) for all (a,b)∈A
⇒(ax,b+ay)=(a,b)=(xa,y+bx) for a, b∈Q
⇒(ax,b+ay)=(a,b) and (a,b)
⇒(xa,y+bx) for all a,b∈Q
⇒ax=a & b+ay=b for all a,b∈Q
xa=a, y+bx=b for all a,b∈Q
⇒x=1,y=0
(1,0)∈Q×Q=A
So, (1,0) is identify element of A.