A=Q×Q ....... [Given]
For any (a,b),(c,d)∈A, ∗ is defined by
(a,b)∗(c,d)=(ac,b+ad) ..... [Given]
To check ∗ is commutative i.e. to check (a,b)∗(c,d)=(c,d)∗(a,b) for any (a,b),(c,d)∈A
Now, (a,b)∗(c,d)=(ac,b+ad)
(c,d)∗(a,b)=(ca,d+cb)=(ac,d+bc)≠(ac,b+ad)
∴(a,b)∗(c,d)≠(c,d)∗(a,b)
Thus, ∗ is not commutative ....... (1)
To check associativity
Let (a,b),(c,d),(e,f)∈A
Now, (a,b)∗((c,d)∗(e,f))=(a,b)∗(ce,d+cf)
=(ace,b+a(d+cf))
=(ace,b+ad+acf) ...... (2)
∴(a,b)∗((c,d)∗(e,f))=(ace,b+ad+acf)
((a,b)∗(c,d))∗(e,f)=(ac,b+ad)∗(e,f)
=(ace,b+ad+acf)
=(a,b)∗((c,d)∗(e,f)) ..... From (2)
∴(a,b)∗((c,d)∗(e,f))=((a,b)∗(c,d))∗(e,f)
Thus, ∗ is associative ....... (3)
(i) To find identity element
Let e=(a′,b′) be identity element of A
⟹(a,b)∗(a′,b′)=(a,b)=(a′,b′)∗(a,b)
As (a,b)∗(a′,b′)=(a,b)
⟹(aa′,b+ab′)=(a,b) ........ Using definition of ∗
⟹aa′=a and b+ab′=b
⟹a′=1 and b′=0
We can verify it as follows
(a′,b′)∗(a,b)=(a′a,b′+a′b)=(1⋅a,0+1⋅b)=(a,b)
Similarly, (a,b)∗(a′,b′)=(a,b)
Hence, e=(1,0) is the identity element in A.
(ii) To find inverse element
Let f=(c′,d′) be inverse element of (a,b)∈A
⟹(a,b)∗(c′,d′)=(1,0)=(c′,d′)∗(a,b) ...... Using definition of inverse element
Now, (a,b)∗(c′,d′)=(1,0)
⟹(ac′,b+ad′)=(1,0) ........ [Using definition of ∗]
⟹ac′=1 and b+ad′=0
⟹c′=1a and d′=−ba
We can verify it as follows
(c′,d′)∗(a,b)=(c′a,d′+c′b)=(1a×a,−ba+1a×b)=(1,0)
Hence, f=(1a,−ba) is the inverse element of A