(i) For any (a, b), (c, d) and (e, f)∈A, we have ′⋆′.
{(a,b)∗(c,d)}∗(e,f)
=(ac,b+ad)∗(e,f)
=(ace,b+ad+acf)
and
(a,b)∗{cc,d)∗(e,f)}
=(a,b)∗(ce,d+cf)
=(ace,b+ad+acf)
So, {(a,b)∗(c,d)}∗(e,f)=(a,b)∗{(c,d)∗(e,f)} for all a, b, c, d ∈Q×Q=A
⇒"∗" is associative on A.
(ii) Let (a, b) be invertible element on A
(c,d)∈A such that
(a,b)∗(c,d)=(1,0)=(c,d)∗(a,b)
⇒(ac,b+ad)=(1,0) and (ca,d+bc)=(1,0)
⇒ac=1,b+ad=0 and ca=1,d+bc=0
⇒c=1a,d=−ba if a≠0
Thus (a,b) is invertible element of A.