(i) Let (x,y) be the identity element in A.
∴(a,b)∗(x,y)=(a,b)=(x,y)∗(a,b)
(ax, b+ay)=(a, b)
⇒ax=a, b+ay=b
⇒x=1, y=0
⇒(a, 0)∈ A (set of rational numbers)
∴(1, 0) is an identity element.
(ii) Here, (1, 0) is the identity element
∴(a, b) ∗ (c, d)=(1, 0)
⇒(ac, b+ad)=(1, 0)
⇒ac=1, b+ad=0
⇒c=1a, d=−ba
∴A−1=(1a,−ba)
Also, inverse of (5,3)=(15,−35) and inverse of (12,4)=(2,−8)