Let A =R -{3}, B=R -{1}. If f:A→B be defined by f(x)=x−2x−3,∀x∈A. Then, show that f is bijective.
Given that, A=R -{3}, B=R -{1}
f:A→B is defined by f(x)=x−2x−3,∀x∈A
For injectivity
Let f(x1)=f(x2)⇒x1−2x1−3=x2−2x2−3
⇒(x1−2)(x2−3)=(x2−2)(x1−3)⇒x1x2−3x1−2x2+6=x1x2−3x2−2x1+6⇒−3x1−2x2=−3x2−2x1⇒−x1=−x2⇒x1=x2
So, f(x)is an injective function.
For surjectivity
Let y=x−2x−3⇒x−2=xy−3y
⇒x(1−y)=2−3y⇒x=2−3y1−y
⇒x=3y−2y−1∈A,∀y∈B [codomain]
So, f(x)is surjective function.
Hence, f(x) is a bijective function