1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Derivative from First Principle
Let A = R - 3...
Question
Let A = R - {3}, B = R - {1}. Let
f
:
A
→
B
be defined by
f
(
x
)
=
(
x
−
2
)
/
(
x
−
3
)
. Is
f
bijective? Give reasons.
Open in App
Solution
A
=
R
−
{
3
}
B
=
R
−
{
1
}
f
:
A
⟶
B
i
s
d
e
f
i
n
e
d
a
s
f
(
x
)
=
(
x
−
2
x
−
3
)
L
e
t
x
,
y
ϵ
A
s
u
c
h
t
h
a
t
f
(
x
)
=
f
(
y
)
⟹
x
−
2
x
−
3
=
y
−
2
y
−
3
⟹
(
x
−
2
)
(
y
−
3
)
=
(
x
−
3
)
(
y
−
2
)
⟹
x
y
−
3
x
−
2
y
+
6
=
x
y
−
3
y
−
2
x
+
6
⟹
−
3
x
−
2
y
=
−
3
y
−
2
x
⟹
3
x
−
2
x
=
3
y
−
2
y
⟹
x
=
y
∴
f
is one-one.
L
e
t
y
ϵ
B
=
R
−
{
1
}
.
T
h
e
n
y
≠
1
.
The function
f
is onto if there exists
x
ϵ
A
such that
f
(
x
)
=
y
.
N
o
w
,
f
(
x
)
=
y
⟹
x
−
2
x
−
3
=
y
⟹
x
−
2
=
x
y
−
3
y
⟹
x
(
1
−
y
)
=
2
−
3
y
⟹
x
=
2
−
3
y
1
−
y
ϵ
A
[
y
≠
1
]
Thus, for any
y
ϵ
B
, there exists
2
−
3
y
1
−
y
ϵ
A
such that
f
(
2
−
3
y
1
−
y
)
=
(
2
−
3
y
1
−
y
)
−
2
(
2
−
3
y
1
−
y
)
−
3
=
2
−
3
y
−
2
+
2
y
2
−
3
y
−
3
+
3
y
=
−
y
−
1
=
y
∴
f
is onto.
Hence, the function
f
is one-one and onto.
Suggest Corrections
0
Similar questions
Q.
Let
A
=
R
−
{
3
}
,
B
=
R
−
{
1
}
. Let
f
:
A
→
B
defined by
f
(
x
)
=
x
−
2
x
−
3
.
Show that
f
is bijective.
Q.
Let A =R -{3}, B=R -{1}. If
f
:
A
→
B
be defined by
f
(
x
)
=
x
−
2
x
−
3
,
∀
x
∈
A
. Then, show that f is bijective.
Q.
Let
A
=
R
−
{
3
}
,
B
=
R
−
{
1
}
and
f
:
A
→
B
defined by
f
(
x
)
=
x
−
2
x
−
3
Is
f
bijective ?
If yes enter 1 else enter 0
Q.
Let
A
=
R
−
{
3
},
B
=
R
−
{
1
}. Let
f
:
A
→
B
be defined by
f
(
x
)
=
(
x
−
2
)
(
x
−
3
)
. The function
f
is:
Q.
Let
A
=
R
−
{
2
}
and
B
=
R
−
{
1
}
. Let
f
:
A
→
B
be defined by
f
(
x
)
=
x
−
3
x
−
2
then
View More
Join BYJU'S Learning Program
Grade/Exam
1st Grade
2nd Grade
3rd Grade
4th Grade
5th Grade
6th grade
7th grade
8th Grade
9th Grade
10th Grade
11th Grade
12th Grade
Submit
Related Videos
Derivative of Simple Functions
MATHEMATICS
Watch in App
Explore more
Derivative from First Principle
Standard XII Mathematics
Join BYJU'S Learning Program
Grade/Exam
1st Grade
2nd Grade
3rd Grade
4th Grade
5th Grade
6th grade
7th grade
8th Grade
9th Grade
10th Grade
11th Grade
12th Grade
Submit
AI Tutor
Textbooks
Question Papers
Install app