Ar=1/2∫0xr dx ⇒Ar=12r+1(r+1) ⇒2rAr=12(r+1)⇒2rArr=12(r+1)r Hence, n∑r=12rArr=12n∑r=1(1r−1r+1) =12(1−1n+1) Given, 12(1−1n+1)=13 ⇒1−23=1n+1 ⇒13=1n+1⇒n=2