The correct option is A Reflexive and symmetric
We have, R = {(a, b) : 1 + ab > 0, ab ϵ R}.
Let a ϵ R. ∴ a2 ≥ 0 or 1+ a2 > 0 or (a,a) ϵ R
∴ R is reflexive.
Let (a,b) ϵ R ⇒ 1 + ab > 0 ⇒ 1 + ba > 0
⇒ (b,a) ϵ R
∴ R is symmetric.
(2,13)ϵ R because 1 + 2 (13)=53 > 0
(13,−1)ϵ R because 1+13 (-1) = 23 > 0
Now, (2, -1) ϵ R if 1 + 2 (- 1) = - 1 < 0, which in not true.
∴ R is not transitive.