The correct option is B Reflexive
We have R={(x,y):x2−4xy+3y2=0,x,y∈N}
Let x=N
x2−4xx+3x2=4x2−4x2=0
∴(x,x)∈R. Hence, R is reflexive.
We have (3)2−4(3)(1)+3(1)2=9−12+3=0
∴(3,1)∈R
Also, (1)2−4(1)(3)+3(3)2=1−12+27=16≠0
∴(1,3)∉R. Hence, R is not symmetric.
Now, (9,3)∈R because (9)2−4(9)(3)+3(3)2=81−108+27=0
Also, (3,1)∈R because (3)2−4(3)(1)+3(1)2=9−12+3=0
Now, (9,1)∈R but (9)2−4(9)(1)+3(1)2=81−36+3=48≠0
∴(9,3),(3,1)∈R and (9,1)∈R
∴R is not transitive.