Let A=∫tan xe−1 tdtt2+1 and B=∫cot xe−1 dtt(1+t2) then
At x=π4, A+B=1
A + B = 1 for all x in (0,π2)
Let A + B = f(x) =∫tan xe−1 t dtt2+1+∫cot xe−1dtt(1+t2)
⇒ f′(x)=tan xtan2x+1.sec2x+1cotx(1+cot2x).(−cosec2x)=0
⇒ f(x) is constant
⇒ f(x)=f(π4)
⇒ f(x)=∫1e−1t dtt2+1+∫1e−1dtt(1+t2)=1
⇒ f(x)=1 for all x in (0,π2)
∴ A, B are correct.