The correct option is D 25(tanθ2tanϕ2)=23
Given: x2144−y225=1 ⇒a=12,b=5
Endpoints of the chord are A=(asecθ,btanθ) and B=(asecϕ,btanϕ)
Then, the equation of chord AB is
xacos(θ−ϕ2)−ybsin(θ+ϕ2)=cos(θ+ϕ2)⇒x12cos(θ−ϕ2)−y5sin(θ+ϕ2)=cos(θ+ϕ2)⇒5cos(θ−ϕ2)x−12sin(θ+ϕ2)y=60cos(θ+ϕ2)⋯(1)
Given equation of chord AB is
2x+3y=1 ⋯(2)
Comparing equations (1) and (2), we get
5cos(θ−ϕ2)2=−12sin(θ+ϕ2)3=60cos(θ+ϕ2)1⇒sin(θ+ϕ2)cos(θ+ϕ2)=−15⇒tan(θ+ϕ2)=−15
Also,
⇒cosθ−ϕ2cosθ+ϕ2=24
Applying componendo and dividendo,
⇒cosθ−ϕ2−cosθ+ϕ2cosθ+ϕ2+cosθ−ϕ2=24−124+1∴tanθ2tanϕ2=2325