Let A(za),B(zb),C(zc) are three non-collinear points where za=i,zb=12+2i,zc=1+4i and a curve is z=zacos4t+2zbcos2tsin2t+zcsin4t(t∈R) Equation of curve in cartesian form
A
y=x2+x+1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
y=(x+1)2
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
y=(x−1)2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
y=x2+x−1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is By=(x+1)2 za=i,zb=12+2i,zc=1+4i Let z=x+iy z=zacos4t+2zbcos2tsin2t+zcsin4t z=icos4t+2[12+2i]cos24sin24+(1+4i)sin4t z=icos4t+cos2tsin2t+4icos2tsin2t+sin4t+4isin4t z=icos4t+sin2t(cos2t+sin2t)+4isin2t(cos2t+sin2t) z=icos4t+sin2t+4isin2t z=sin2t+i(cos4t+4sin2t) x+iy=sin2t+i(cos4t+4sin2t) Compare real and imaginary parts x=sin2t⟶1 y=cos4t+4sin2t y=(cos2t)2+4sin2t y=(1−sin2t)2+4sin2t y=1+sin4t−2sin2t+4sin2t y=(sin2t)2+2sin2t+(1)2 y=[sin2t+1]2 From equation 1 y=(x+1)2