wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Let A(za),B(zb),C(zc) are three non-collinear points where za=i,zb=12+2i,zc=1+4i and a curve is z=zacos4t+2zbcos2tsin2t+zcsin4t(tR)
Equation of curve in cartesian form

A
y=x2+x+1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
y=(x+1)2
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
y=(x1)2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
y=x2+x1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is B y=(x+1)2
za=i,zb=12+2i,zc=1+4i
Let z=x+iy
z=zacos4t+2zbcos2tsin2t+zcsin4t
z=icos4t+2[12+2i]cos24sin24+(1+4i)sin4t
z=icos4t+cos2tsin2t+4icos2tsin2t+sin4t+4isin4t
z=icos4t+sin2t(cos2t+sin2t)+4isin2t(cos2t+sin2t)
z=icos4t+sin2t+4isin2t
z=sin2t+i(cos4t+4sin2t)
x+iy=sin2t+i(cos4t+4sin2t)
Compare real and imaginary parts
x=sin2t1
y=cos4t+4sin2t
y=(cos2t)2+4sin2t
y=(1sin2t)2+4sin2t
y=1+sin4t2sin2t+4sin2t
y=(sin2t)2+2sin2t+(1)2
y=[sin2t+1]2
From equation 1
y=(x+1)2

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Parametric Representation-Ellipse
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon