Let a→=a1i^+a2j^+a3k^ ,b→=b1i^+b2j^+b3k^ and c→=c1i^+c2j^+c3k^ be three non-zero vectors such that c is a unit vector perpendicular to both a and b. If the angle between a and b is π6, then a1a2a3b1b2b3c1c2c32is equal to?
0
1
14a12+a22+a32b12+b22+b32
34a12+a22+a32b12+b22+b32
Explanation for Correct Answer:
Step 1:Given Data
Let a→,b→,c→ be three non zero vectors.
c is a unit vector perpendicular to both a and b.
⇒a.c=0,b.c=0 and c→=c12+c22+c32=1
a→.b→=a→b→cosθ⇒a1b1+a2b2+a3b3=a12+a22+a32b12+b22+b32cosπ6⇒a1b1+a2b2+a3b3=32a12+a22+a32b12+b22+b32∵cosπ6=32⇒a1b1+a2b2+a3b32=34a12+a22+a32b12+b22+b32→(i)squaringonbothsides
Step 2: Finding a1a2a3b1b2b3c1c2c32
a1a2a3b1b2b3c1c2c32=a1a2a3b1b2b3c1c2c3a1b1c1a2b2c2a3b3c3=a12+a22+a32a1b1+a2b2+a3b3a1c1+a2c2+a3c3a1b1+a2b2+a3b3b12+b22+b32b1c1+b2c2+b3c3c1a1+c2a2+c3a3c1b1+c2b2+c3b3c12+c22+c32=a12+a22+a32a1b1+a2b2+a3b30a1b1+a2b2+a3b3b12+b22+b32000c12+c22+c32∵a.c=0,b.c=0=c12+c22+c32b12+b22+b32a12+a22+a32-a1b1+a2b2+a3b32
substituting equation (i)
=1b12+b22+b32a12+a22+a32-34a12+a22+a32b12+b22+b32=14a12+a22+a32b12+b22+b32
Hence, the correct answer is option (C).
Let →a=a1^i+α2^j+a3^k, →b=b1^i+b2^j+b3^k and →c=c1 ^i+c2 ^j+c3 ^k be three non-zero vectors such that →c is a unit vector perpendicular to both the vectors →a and →b. If the angle between →a and →b is π6, then ∣∣ ∣∣a1a2a3b1b2b3c1c2c3∣∣ ∣∣2 is equal to