Let ABC be a triangle and D and E be two points on side AB such that AD = BE. If DP ∥ BC and EQ ∥ AC, then prove that PQ ∥ AB.
In △ABC, we have
DP || BC and EQ || AC
∴ ADDB = APPC and BEEA = BQQC
⇒ ADDB = APPC and ADDB = BQQC
[EA−ED+DA−ED+BE−BD(∵AD−BE)]
⇒ APPC = BQQC
⇒ In a △ABC, P and Q divide sides CA and CB respoectively in the same ratio.
⇒ PQ || AB