Co-ordinates of centro-id
(G)≡(2×0+9×12+1,2×0+5×12+1)≡(x1+x2+x33,y1+y2+y33)
Co-ordinates of centro-id (G)≡ (3,53)≡(x1+x2+x33,y1+y2+y33)
Now,
⇒ x1+x2+x33=3
⇒ x1+x2+x3=9 ----- ( 1 )
⇒ y1+y2+y33=53
⇒ y1+y2+y3=5 ----- ( 2 )
D(h,k) lie on the line BC, so it will satisfy the equation 2h−k=10
Now,
Slope of CD× Slope of BC=−1 [ Since, both are perpendicular to each other ]
⇒ k−0h−0×2=−1
⇒ h=−2k
Substituting value of h in given equation we get,
⇒ 2(−2k)−k=10
⇒ −4k−k=10
⇒ −5k=10
∴ k=−2
⇒ h=−2k=−2(−2)=4
So, we got D co-ordinates (4,−2)=(x2+x32,y2+y32)
⇒ x2+x32=4
⇒ x2+x3=8
Substituting above in ( 1 ) we get,
x1+8=9
∴ x1=1
⇒ y2+y32=−2
⇒ y2+y3=−4
Substituting above in ( 2 ) we get,
y1−4=5
∴ y1=9
∴ The possible co-ordinates of A is (1,9)