Let −−→AB=→b and −−→AC=→c where ∣∣∣→b∣∣∣=∣∣→c∣∣
Let −−→AE=α→c
But −−→AD=→b+→c2
−−→DE⊥−−→AC⇒⎛⎝α→c−→b+→c2⎞⎠.→c=0
⇒α∣∣→c∣∣2−→b+→c2.→c=0
⇒→b.→c=(2α−1)∣∣→c∣∣2 ......(1)
−−→AF=12⎛⎝→b+→c2+α→c⎞⎠
=14(→b+(2α+1)→c)
−−→BE=α→c−→b
∴−−→AF.−−→BE=14[(2α2+α−1)∣∣→c∣∣2−(1+α)→b.→c] ......(2)
Since ∣∣∣→b∣∣∣=∣∣→c∣∣
Now using (1) in (2) we find that −−→AF.−−→BE=0
∴−−→AF⊥−−→BE