The correct option is D inradius of triangle is 3√32 units
Since, ABC is an acute angled triangle,
∴A,B,C∈(0,π2)
2sec4A=sec4B+sec4C ...(1)
secAsecBsecC=8 ...(2)
Consider the given G.P.
∴(logsecCsecB)2=(logsecBsecA)⋅(logsecAsecC)
⇒(logsecB)2(logsecC)2=(logsecA)(logsecB)⋅(logsecC)(logsecA)
⇒(logsecB)3=(logsecC)3
⇒secB=secC
Putting this in the equation (1), we get
2sec4A=2sec4C
⇒secA=secC
⇒A=C
⇒A=B=C
From (2), secA=2
⇒A=π3=B=C
⇒A,B,C form an equilateral triangle.
⇒ Side =2Rsinπ3=2⋅3√3⋅√32=9 units
∴ Area =a2√34=81√34 sq. units
Semi-perimeter =3a2=272 units
Inradius =Δs=81√34⋅227=3√32 units